日本一二三区视频|国产精品欧美天美传媒|中文字幕婷婷日本本卡|国内精品久久久久国产盗摄|国产xxxx99真实实拍|国内高清一区二区三区视频|精品卡通动漫亚洲av第一页|97久久人妻一区二区中文无码

0731-82716163

Exhaust gas treatment technology

Products > Exhaust gas Treatment > Exhaust gas treatment technology

Exhaust gas treatment technology

There are many domestic organic waste gas treatment technologies, but as far as their working principles are concerned, they can be divided into the following eight types:

      1. Adsorption: The use of an adsorbent to physically combine with a volatile organic compound or a chemical reaction to remove contaminated components.

      2. Absorption: The organic waste gas and the washing liquid are brought into full contact to realize the transfer of pollution molecules, and then the organic waste gas molecules are completely removed by chemical agents.

      3. Condensation: The exhaust gas is cooled to the "freezing point" of the organic exhaust gas molecules, which are condensed to a liquid state and then recovered.

      4. Membrane separation: Use synthetic membrane to separate toxic substances in exhaust gas.

      5. Biodegradation: Microbes digest and metabolize pollutants in waste gas, and convert the pollutants into harmless water, carbon dioxide and other inorganic salts.

      6. Thermal incineration: Based on the characteristics of organic compounds in the exhaust gas that can be burned and oxidized, it is converted into harmless carbon dioxide and water.

      7. Plasma: The plasma field is enriched with a large number of active species, such as ions, electrons, excited atoms, molecules, and free radicals; active species dissociate small molecules of pollutant molecules.

      Plasma is mainly suitable for organic waste gas treatment with high concentration and relatively low temperature. It is generally suitable for the recovery and treatment of organic waste gas with high VOCs content and small gas content. Since most VOCs are flammable and explosive gases, subject to the limit of explosion, the VOCs content in the gas will not be too high, so it must be higher. The recovery rate needs to adopt very low-temperature condensing medium or high-pressure measures, which will inevitably increase equipment investment and processing costs. Therefore, this technology is generally used as a good processing technology and combined with other technologies.

      8. Photooxycatalysis: Photocatalyst nanoparticles are stimulated to generate electron-hole pairs when irradiated with light of a certain wavelength. Water adsorbed on the surface of the hole-decomposition catalyst generates hydroxyl radicals OH, and the electrons reduce the surrounding oxygen to active ion oxygen. Therefore, it has a strong redox capacity and can destroy various pollutants on the surface of the photocatalyst.



Next: End
璧山县| 勃利县| 靖江市| 天柱县| 广元市| 松潘县| 吐鲁番市| 赣榆县| 滕州市| 孙吴县| 镇赉县| 武宁县| 杭锦后旗| 河东区| 区。| 抚宁县| 衡阳市| 梅河口市| 新和县| 灵武市| 廉江市| 萍乡市| 新丰县| 友谊县| 方山县| 共和县| 吉安县| 邛崃市| 通州市| 江北区| 崇文区| 尼玛县| 台东市| 北流市| 鄂伦春自治旗| 马关县| 清涧县| 三门县| 岑溪市| 凌源市| 楚雄市|